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Many authors have examined problems related to the load transmission from an elastic 
rod to an elastic plane. It was assumed in the majority of investigations that the stringer 
is a thin rectilinear rod transmitting only longitudinal forces while the rod contact with 
the plane is realized along a line. Different modifications of sheet contact with a recti- 
linear tensile stringer considered as an inner stringer of finite length or as an infinite 
edge stringer were analyzed in [i, 2]. Problems about the reinforcement of holes in a plate 
by a thin rod of constant section that possesses bending and longitudinal stiffnesses were 
solved in [3]. The eccentricity of the connection between the shell middle surface and the 
rod was taken into account in [4] in a study of shells reinforced by thin curvilinear rods. 
Other models of the one-dimensional element connected to an elastic medium without taking 
account of its bending stiffness were analyzed in [5, 6]. Solutions of a number of problems 
with circular reinforcing elements are obtained in [7]. 

An isotropic finite or infinite, linearly elastic plate reinforced along part or all of 
the boundary and along certain internal lines by elastic curvilinear rods possessing variable 
longitudinal and bending stiffnesses, variable curvature and thickness, the eccentricity of 
the connection to the plate and with an arbitrary transverse section shape symmetric relative 
to the plate middle surface are studied in this paper. Boundary conditions on the line of 
plate contact with the inner or edge elastic rods are obtained for the reinforcement models 
generalizing [i, 2] by using the theory of elastic rods in the case of a plane state of 
stress. Existence and uniqueness theorems are proved for appropriate boundary value problems; 
the singularity of the stresses at angles and tips of the rods are proved. The relationships 
obtained carry over completely to the plane strain problem for an elastic cylinder reinforced 
by homogeneous cylindrical shells along the generator. Some of the results described here 
are represented in [8]. 

i. ONE-DIMENSIONAL CURVILINEAR REINFORCEMENTS 

Let x i be a Cartesian coordinate system whose plane (xl, x 2) agrees with the plane of 
the rod central axis L 0 (the line of centers of gravity of its transverse sections) that is 
a plane piecewise-smooth curve without reentry points, and let xi ~ be coordinates of the 
points of L 0. Let us parametrize the central axis by using the arc length T, and let us 
denote the rod transverse section by ~(~), the boundary of the transverse section by 8~(T), 
and its area by A(T). Furthermore, unless specified otherwise, we consider the subscripts 
on the subscripted parameters to vary between 1 and 2 and understand summation between these 
limits over repeated subscripts. Let us introduce the vector tangent to the central axis 
ki ~ = ~i~ and its normal ni~ = eijkj~ where eij is an alternating symbol: e12 = 

-e21 = i, ell = e22 = 0, and the dot overhead denotes the derivative with respect to T. We 
assume one of the principal axes of inertia of the rod transverse section lies in the (xl, 
x 2 ) plane. 

Let bulk forces ~i(x) act on the rod, while an external surface load Ti(x)' Fi(~) is 
applied to the rod side surface, T o is the principal vector of forces in the transverse sec- 
tion of the rod T < To acting on its part with coordinates T > To from the side of the part 
M(T 0) is the moment of these forces relative to the center of the gravity of the transverse 
section (the moment acting counterclockwise is considered positive), vi~ is the displace- 
ment of the rod central axis. We designate the nodes ~R (~) (~ = I-N R) of the line L0 its 
angular points, where we will consider conditions of rigid connection of parts of the rod 
given and also points where concentrated (on sections passing through these points) forces 
and moments are given. 
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Let the boundary conditions 

r '(~) ~ '( ] )  ~(~) M ('r~) : t I  (2) F~ (~,) -~  , M (~,) = - -  F ~ ( ~ )  = - i  , = - -  *:'  ' = ( 1 . 1 )  

b e  g i v e n  on  t h e  e n d s  o f  t h e  r o d  z z ,  ~= (~2  > zz).  I f  t h e  r o d  i s  c l o s e d ,  we s e l e c t  a p o i n t  
�9 z such that no forces or moments would be concentrated there, then the boundary conditions 
(i.i) are replaced there by continuity conditions for the forces, moments, displacements, and 
rotations 

T2 T ~2 Fi('r) I~, = M (  )l,~ = 0, "c,,. = "q + l; ( 1 . 2 )  

o "o (~)  ' d  ('0 ~ = 

We have at the nodes ~R (a) 

~ ( ~ ' +  o) ~(~y) o) ~(~) ( ,~ '  + . . . .  �9 m , M  O) - -  M (v(Ra) - -  O ) =  - - M ( ~  ~), 

o _ 0 ( r  o, ~ ( G  ~ ) + o )  ~ - = 

~ 1 7 6  o) :o(~(~) o) ~ o) o. Ui '~i  K ~ R  "JF - -  u i  k ~2R - -  1Zi I,T,R - -  

(1.4) 

Here Fi(J), FRi (a) are given forces, M(J), ME(a) are given bending moments, and ~ is the 
length of L0, j = i, 21. 

Let $ = (x i - xi~176 be the projection of the radius-vector connecting the center 
of gravity of the transverse section with an arbitrary point of the section on the normal 
ni~ Using the hypothesis of plane sections, we represent the displacement of a point of 
the rod that does not lie on the central axis with coordinates xi(T, ~) = xi(~, 0) + ~ni~ 
[9] 

0 ~ 0  0 " 0 ~ (~, ~): = x~ (~, ~) - z~ (~, ~) = v~ ( ~ ) -  ~ (% 
0 ( ~ , 0 )  (i 5 )  ~ (~): = ~ ( , ,  0) ,  x~ (~):  = x i  

(x i and x i' are coordinates of a point before and after deformation). It is taken into ac- 
count in deriving (1.5) that under conditions of smallness of the angles of rotation 

o '  d x ~ '  d T  - ~ j  ~'j ) ~ ( %  = e ~ ( ~ : ~ + ~ ) ( t  o o , o  o o  0 - k~ vj  (~)  n j  

Neglecting transverse stesses in the rod, setting It[ << 1 and using the Hooke's law, 
after integrating over ~ we express the longitudinal force Fi(T)ki~ acting in the trans- 
verse section of the rod and the bending moment M(T) relative to the center of gravity in 
terms of the displacement of the central axis 

~G ' 0  0 0 " 0  ' 
F~(~)~~ (G + v ~) ~J~ + X G ( , ~ ) ,  

r ~.oko o ' . o .  
J ~ ( ~ )  = - G L~ ~ ~ + (,~ ~) ], 

G(z) = U ~) (T)A (-r), G( '0  = U")  i , 
gl(~) 

( 1 . 6 )  

Here X(~) = ki~ ~ is the curvature of the rod central axis (X > 0 if the center of the 
tangent circle lies to the left of the rod during a positive transversal), E(r) is the Young's 
modulus of the rod material, and G and G I are the rod longitudinal and bending stiffnesses. 

The rod equilibrium equations in the notation used are written in the form [4, 9] 

F~ (~) = - -  p~  (T) ,  k [  (z) - -  F i  (~ )  n ~  (~ )  = - -  m (~ ) ;  ( 1 . 7 )  

p~(~)= ~ , f~(~ ,~)d~ + ,I ~ ( ~ , ~ ) ~ r ,  
~(~) 0~(~) 
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~(6 o~(~) ( 1 . 8 )  

o(~, D :=  {[~ + ~(~)~(~)1~ + ~(~)}'/~, 

where  p i ( x )  and m(x) a r e  t h e  l i n e a r  f o r c e s  ana moments t h a t  o c c u r  d u r i n g  t r a n s f e r  o f  t h e  
bu lk  l o a d  ~i  and s u r f a c e  l o a d  Ti  a c t i n g  on t h e  ro d  o v e r  t h e  l i n e  L0, and a r e  d i s t r i b u t e d  
a l o n g  t h e  rod  c e n t r a l  a x i s .  T o g e t h e r  w i t h  t h e  b o u n d a ry  c o n d i t i o n s  ( 1 . 1 ) - ( 1 . 4 )  t h e  r e l a t i o n -  
s h i p s  ( 1 . 5 )  and ( 1 . 7 )  y i e l d  a c o m p l e t e  s y s t e m  o f  e q u a t i o n s  f o r  p l a n e  c u r v i l i n e a r  r o d s .  F u r -  
t h e r m o r e ,  r o d s  a r e  examined  f o r  which  t h e  l o n g i t u d i n a l  and b en d in g  s t i f f n e s s e s  a r e  0 < G, 
Gz 5 ~ w h i l e  t h e  c u r v a t u r e  i s  IxI < ~. 

We s h a l l  c o n s i d e r  t h e  s e t  o f  f u n c t i o n s  { v i ~  F i ( x ) ,  M(x)} on t h e  l i n e  L0 t o  be long  

to the class H(r)(L0) if the functions vi~ vi~176 Fi(~), M(x) are absolutely con- 
tinuous at all points of L 0 with the exception, perhaps, of the nodal points, satisfy (1.6) 
almost everywhere on L0, and have finite left and right limits at the nodes. 

Let the set {vi ~ Fi, M}, {vi *~ Fi*, M*} �9 H (r). We introduce the notation 

2 < , ~ 1 7 6  = . f  -o o.,o o .o o . ,o ,o  . 

L o 

* o ~ MM*}d~. 

L 0 

(1 .9)  

Then setting Pi = -Fi, m = -M + Fini ~ 
formula for the rod 

= -- rnui hi) d'~ -6 2<,~  S ",o o 
L o 

+ [F~(~)ui*~176176176 ~ -  

NR . - "~z)  +.0 

--E [F~(x)v*~ - M (x) v~ ) o' 
0 ~ 1  

, by using integration by parts we obtain the Green's 

(1.1o) 

where the sum is taken over all nodal points ~R (~) and the components for the tips ~i, ~2 
drop out if the rod is closed. Taking into account that the rod elastic energy is <v ~ 
v~ r) ~ 0 because of (1.9), it is easy to prove a uniqueness theorem for the rod: the solu- 
tion of the problem (1.6), (1.7), (1.1)-(1.4) in the class H(r) is unique to the accuracy of 
a rigid shift with the rotation vci~ = C i + C3eijxj~ 

Setting vi *~ = C i or vi *~ = eijxj ~ in (1.9), we also have that it is necessary for the 

existence of a solution to the problem (1.6), (1.7), (1.1)-(1.4) in H(r) that the sums of the 
forces and moments applied to the rod be zero 

N R 

p~ (~) d ,  + F~ 1) + F~ 2) + Y~ r ~ )  = o; ( 1.  ii ) 
LO ~i 

N R 
( i )  o ~ (2 )  e __ ~ l ( i )  _ _ 7 ~ ( 2 )  r ~ ( a )  o / (~)~ ..i" [pi (~) eijx~ (~) m (~)] d~ + Fi e~jxj (~) -6 r i  ei;xj (~2) q- E -- trR~e,jj~R j--M~ )1=0. (i.12) 

L0 ~ I  

Because of (1.2) the tip terms Fi(J), M(J), j = i, 2 drop out of these relations for a 
closed rod. 

The relationships (1.6) and (1.7) can be integrated, then 

vi~ = U~i "6 Ci "6 Cseijx ~ (T), v0~ (T; p) = 

= [g(n)N(~l)§ n~ (n) ~ [a(~!~176 dq; 

(l.13) 
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N ('q~ p): = F~ 01~ p) k~ ('q~ f~(q~ p) = - -  J p~(t)dt  + F~ (-cl; p) - -  
t 1 

~o ~V ~o 

,~(~) g~o '~i "~i '~I 

I 0 1 + F~(.~;p)~,~(n o1 + M(,~;p)-  E 1[~'~ ( n ) - . ~  ('47))1 & ? +  #,~)1. 
z(r <~o 

(1.14) 

Here and henceforth yiZ(O ~ = eij[xj~ ~ - xj~ a(q ~ = X(q~176 b(q ~ = i/Gz(q ~ + 

X2(q0)/G(q0); g(q0) = i/G(q0) and the set of external loads for the rod {Pi, m, FRi (~), 

MR(~) } is denoted by the symbol p without subscripts. The constants C~ (~ = 1-3) in (1.13) 
are arbitrary by virtue of the uniqueness theorem. Conditions on the jump (i.4) were taken 
into account to obtain (1.14). 

It is also necessary to put Fi(~z; p) = -Fi (z), M(~z; p) = ~(z) to satisfy the first 
pair of conditions (i.i) at the ends of an open rod. As is easily seen, the second pair of 
conditions in (i.i) reduces to the solvability conditions (i. Ii) and (1.12) of the problem 
for a rod in the original formulation (1.6), (1.7), (1.1)-(1.4). 

The relationships (1.13) and (1.14) can be rewritten in the form 

vo~ ("c)(T; p) = i { [II~ip~ + yI{im)m] (%) + II~ i (~0, 'h) FS*>+ YI[ *'~) ("Co" 'h) M<n -4- 

(1.J_5) 

where H(~) is the Heaviside function and ~}j, H~ ~m) are Volterra operators 

"co "~o 

n ~ = H~. (t) dt, [m~'~),4 nP m) 

n ~ j  (~o, t) = - t~ ~ (~o) b ~ (~o) g (~o) - a (-~o) ( y ~  (0~ - uj~ (~o ) ) ]  + 

+ n~ ('~o) [ &  ('~o) - ~% (t) - ~,~ (t) (13 (To) - B (t))], 
O n (~'~) ~-  t) = - #o (~o) ~ (~o) + ~ (To) ( ~  (To) - ~ (t)).  ~*i kbO ~ 

( i .16) 

Here the functions El, B are determined in terms of the rod stiffness and geometry 

B(T)  = b(~t~ ~  = t {a(q~ [k~176 + ZO]~176 + Y~(~]~176 dq~ 

After substituting (1.14) into the force and moment continuity conditions (1.2) for a 
closed rod, we arrive at the solvability conditions (i.ii), (1.12), just as for the open rod 
(if the end terms are discarded there). If the stiffnesses are 0 < (G(~), GI(T)) < ~ at 
least at some part of the curve L0, then by taking account of the Green's formula (I.i0) it 
can be shown that the continuity conditions for the displacements and angles of rotation 
(1.3), not utilized up to now, are necessary and sufficient for determination of the three 
unknown constants Fi(vl; p) and M(~I, p) in the form of functionals of Pi and m. Substi- 
tuting these values for the constants into (1.15), we obtain 

~o~(~; p) .[ t[m~PJ + HY ),~] (~o) + E [[H~j (,o, ~ ) ~  
h ~ ~:* ( 1 . 1 7 )  

M 1 g[(lm) w h e r e  t h e  o p e r a t o r s  II, i 1I{ ra) a r e  sums o f  t h e  V o l t e r r a  o p e r a t o r s  .... ~j,**i~ r e p r e s e n t e d  i n  
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(1.16) and finite-dimensional (degenerate) operators 

1 lIIopi] (To) [H~sp~] (~o) + ~ o = Hi s (%, t) Ps (t) dt, 
L o 

(l~)ra t) m (t) dt, [n iT)~]  (Co) [m~ ](Co) + .i ~,(o,,,),. ~ i j  ~,~0' 
L o 

I I ~  (~o, t) = - ~ (Co) [ -  ~~ (~) ~ s  (t) g ( n )  - a 0:o) (~ (t) + v~  (~o) ~ (t))] + 

+ n o (%) [-- N~ (t) Ea (%) -- $~ (t) B ('%)1,: 

II~ ~ (~o, t) = - ~,.o (~o) [ _  ko (~o) ~(,~) (t) g (~o) - a 0:o) ( ~ m )  (t) + 

+ v~ ('~o) ~(s + ,~o (":o) [ -  ~ )  (t) E~ (Co) - -  ;~ )  (t) B ('~o)]. 

(1.18) 

The functions q~j, ~j, qa(m), r are determined explicitly in terms of the rod curva- 
ture and geometry 

B o = B (r~ + z), e ~ = E~ ( ~  + Z), B v (~) = Bo _ B (~),  E v (~) = e ~ - -  E~ (~), 

~.J (~) = [ e  v (~) - u~ (~) 8 v (~) - e ~ , s  (~)]/BO, ~,j (~) = (~ -~ )~o~j  (~), 

( ~ - ~ ) ~  . . . .  ( ~  ~_~)/a A, a~  ~ . ~ - -  ~ , . % ,  ~ s  = Z~~ ~ E~es,~ o 

~,s (~) = [ z  v (~) - u} (~) ~ v  (~)] Bo - -  [e~ (~) - ~ (~) ~v (~)] e~, 

~'~ = z~ (~1 + O, z~  (c) = ~~ - z .  (~). ~,T ~ (~) = (-q-~)~,~ol? ~ (~), 
0 (m) 03~m) V ' 

(1.i9) 

As already mentioned, by virtue of the Green's formula the relationships (1.19) yield 

bounded kernels if Nij ~ Nij (~ at some part of the curve L 0 0 < (G(~), Gz(~)) < ~. When 

G(T) = GI(T) = ~ on the whole rod, it is necessary to set v0i = 0. And when either the longi- 
tudinal stiffness is G(T) = ~ or the bending stiffness is GI(T) = ~ at each point of L0 the 
conditions (1.3) can already not be necessary and sufficient to determine the forces Fi(Tz; 
p) and moments M(cl; p), however the displacements vi ~ will nevertheless be determined and 
unique to the accuracy of constants C i and the functions vi0 ~ are representable in the form 

the kernels Nij ~ Nij (~ can be obtained by passing to the limit from (1.].8) (1.17), w h e r e  

and (1.19). 

The equations presented in this section and the reasoning are carried over also to cylin- 
drical shells homogeneous along the generators that are under plane deformation conditions 
if G(T) = E(z)2h(c)/(l - v2(~)) is the linear longitudinal stiffness, Gz(<) = E(c)[2h(c)]3/ 
[12(1 - v2(c))] is the linear bending stiffness of the shell and are set in (1.6) below (E, 
v, and 2h is the Young's modulus, Poisson ratio, and thickness of the shell). The distributed 
forces and moments referred to the middle surface will be taken as pi(~) and m(T) 

h +  

p~ (~) = ~ ~(~, $) ~ (~, ~) d~ + ~ (~, h+) Y~+ (~) -- e(~, h_) f~_ (~), 
h _  

h+ 

m (~) = ~ @(~, $) Sk ~ (~) ~ (~, ~) d~ + @ (~, h+)  h+ (~) Ti+ (T) k ~ (~) - -  ~'(~, h_)  h _  (x) ~ Ti (~) ko (~) 
h _  

2. BOUNDARY VALUE PROBLEMS FOR PLATES WITH ONE-DIMENSIONAL 
ELASTIC REINFORCEMENTS 

Let us consider a finite or infinite simply connected or nonsimply connected homogeneous 
linearly elastic plate D of constant thickness H 0 reinforced along a certain part L b_ of the 
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boundary 8D by edge rods (stringers) with axes L b while there are also still internal rods 
with axes L w in elongated cavities with edges Lw• The total number (connected parts) of 
stringers equals N. Let ui(x), oij(x) be the mean displacement and stress with respect to 

thickness in the plate. Then the Lame equations 

(A* @ p)uj,ji-~ btui,jj : 0 ( 2 . 1 )  

a r e  v a l i d  f o r  a p l a t e  in  t h e  p l a n e  s t r e s s  s t a t e  (A n = 2A~/(A + 2 ~ ) ,  A and ~ a r e  Lame con-  
s t a n t s ) .  

Le t  us w r i t e  down t h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e s e  e q u a t i o n s  g e n e r a t e d  by t h e  rod  r e i n -  
f o r c e m e n t s .  F o r c e  t r a n s m i s s i o n  f rom t h e  s t r i n g e r  t o  t h e  p l a t e  can be d e s c r i b e d  by d i f f e r e n t  
methods [i, 2]. For definiteness, we consider that it occurs along the line of intersection 
of the plate middle plane and the rod side surface (infinitely thin plate) that is at a dis- 
tance h(T) from the rod central axis, i.e., along a line with the coordinates xi~ + 
ni~ Displacement continuity conditions should be satisfied on the line of contact. 
For the edge rod we have 

ui(s ) lo .  = vi(~, h_(T)), s ~ Lb-.  

Analogously for the inner rod 

ui(S~)[OD = ui(~, ht(~)),  s• ~ L~• 

Here s• is the parametrization of the rod and plate lines of contact associated with'the 
parametrization �9 of the rod middle line Lb, L w (and in agreement with it to the accuracy of 
a sign for a zero thickness rod); the sign + refers to quantities on the right, and- on the 
left of the line of rod contact with the plate (during a positive traversal); h+(t) > 0; 
h_(t) < 0; as• = ~[o(~, ht)]d~. 

Using (1.5) to express the displacement vi(T, h i ) of the stringer in terms of the dis- 
placement of its central axis vi~ and taking account of the expression of these latter in 
terms of Pi and m in tlhe relationships (1.15) and (1.7), we obtain boundary conditions for 
the inner reinforcement of an elastic plate by a finite-thickness elastic rod 

u ) : =  % )  - : p ) ) ,  �9 = ( 2 . 2 )  

Analogously for the edge stringer, we have condition (2.2) just for 6i_(s_; u). Here p(e) 

is the part of p generated by the external forces Ti, fi as well as the tip Fi(k), M (k) and 

the concentrated forces and moments by means of (1.8), while p(P) is the part of p generated 
by forces with which the plate acts on the stringer. 

For the inner stringer 

p~) (z) = [ -  ~{j (s+)~ (T, h+) nj (s+) - -  ~{j (s_) ~ (~, h_) nj (s_)] H o, 

rn (p) (~) = i - -  (~ij (s+) ~ ('~, h+) h+nj (s+) - -  (~ij (s_) ~ (~, h_) h_nj  (s_)] ]? (g  Ho, ( 2 . 3 )  

where oij(s • are the stresses in the plate on the lines of contact with the rod. We should 

set oij(s+) = 0 in these formulas for an edge stringer. We assume that M(~i; p(P)) = Fi(Ti; 

p(P)) = 0 for unclosed stringers [for closed stringers they are determined uniquely in p(P) 

from conditions (1.3)]. Let us note that by virtue of (1.13), unknown constants ci(k) (i = 

I, 2, 3, k = l-N), its own for each of the N stringers, enters into the variable vi(~ , h• 

p(P)) in (2.2). 

The boundary conditions (2.2) must be supplemented by the last two boundary conditions 
in (i.I) for ~ = ~2 [and on a closed stringer by the conditions (1.12)] equivalent to (I.I!) 
and (1.12) from which we obtain on each of the stringers 

( @ ) ;  + .  = O, ( @ ) ;  T = = - -  (2.4) 
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F 'gTq ' ) 'p (V ' ) :  = -  ; P~v) p(~')) , ,  2 , (t) dt, M (~h!; : =  

i f )  

F~ eh) :-- 

~) .~ik) ~(h) 
N Rk 

. . . .  ,I pi'(e) (t) dt  - -  F~ hi) F~ h2) ~_~ *' Ri~(hc~), 
,r (l,.) a = l  

(h) 
"7 ~2 

M r : =  - -  .I n~ ~ ) &  ~ p { r  .I re(e) ( t ) d t -  M (hi) - -  M (h2) --  

N Rk 

F(kl). I 1 / (h~z)~l - ( 4  - E - > )J G ?  > + 

(2.5) 

( 2 . 6 )  

where T2(k) = ~i(k) + s Fi(kl) + Fi(k2) = M(k~) + M(k2) = 0 on each of the closed string- 
ers. 

Thus, if the plate along the part L b_ of the boundary 8D as well as on the internal con- 
tours Lw• is reinforced by N elastic rods with longitudinal and bending stiffnesses differ- 
ent from zero, then we arrive at a boundary value problem for Eqs. (2.1) with boundary condi- 

tions (2.2) on Lw• L b (and corresponding conditions on the rest of the boundary 8D\Lb_) as 

well as by conditions (2.4) for the functions ui(x) and the constants Cj(k) (j = i-3, k = 

l-N). Here pi(P ) = pi(P)(~; u), m(P) = m(P)(~; u) are calculated by using (2.3). If their 
thicknesses are considered zero in the rod models under consideration, while the stiffnesses 
are different from zero, then we must set h+ = h- = 0, s_ = -s+ = �9 in (2.2) and (2.3) and 

the edges Lw• coincide and m(P) = 0. 

We now obtain the Green-Betti formula for the plane problem of elasticity theory for the 
boundary conditions (2.2) and (2.3). Let B(r)(D, L) be a class of functions ui(x) satisfying 

the Lame equation (2.1) in D\L such that the set {vi~ Fi(p(P)(u)), M(p(P)(u))} e 

H(r)(L) constructed by them using (1.13), (1.15), (1.17), (2.3) the bilinear form for any 

two functions ui, ui* from B(r)(D, L) is bounded 

tt 
D (2.7) 

and the Green-Betti formula holds in D 

P 

2 <u, u*> (~) 09) = J ~j (s) ~:~ (< ~) ,~j (~) &, 
ODULw ~ 

while regularity conditions lui(x)l < Ci, ui,j(x) = o(R-1), R 2 = xi 2 + ~ are still satisfied 
for the infinite domain D. 

Let us note that the imbedding in H(r)(L) will be satisfied if oij(s ; u) e LI(L), (lhl, 
[Xl) < ~ and (G, GI) # 0. 

For ui, ~i* e B(r)(D, L w U L b) we introduce the bilinear form <u, u*>(Pr): = <u, 

u*>(P)(D)H 0 + <v~ v~ (L b U Lw), where the bilinear form <v ~ v*~ is given by 
the relationship (1.9). From (2.2), (2.3), and(2.5) we have the Green-Betti formula for a 
reinforced plate 

2 <u, u*> (p~) = H o [ S 6~_ (s_; u*) c~ 0 (s_; u)n~ (s_) d s _  + 
[_Lb--  
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Lw--  Lw_ ~ 

OD L L b _  J 
N 

+ E p(p)(u)) - 
h = l  

�9 ~ ( z 2 )  ,'l 

(2.8) 

We call the problem for (2.1) in which the elastic reinforcement conditions (2.2) and 
(2.3) are given on the inner contours Lw• and the part L b_ of the boundary, the forces 

azj(s; u)nj(,r = gz(s), s ~ L r ,  ( 2 . 9 )  

are given on the part L T of the boundary, and the displacements 

u~(s) : / i(s),  s ~ Lu ,  ( 2 . 1 0 )  

on the part Lu, the problem (r -- T - u). If the sections L u = @ or L T = @ or conditions of 
elastic one-dimensional reinforcement are given on the whole boundary 8D, then we arrive at 
the problems, (r - T), (r - u), and (r), respectively. 

Taking into account that <u, u>P r -> 0, we obtain the following uniqueness theorem in the 

class B (r) (D, L b U L w) from (2.8). The solution of the problems (r) and (r - T) is unique 
to the accuracy of a rigid shift Uci(X) = Vci(X) = Ci ~ + Cs~ (x e D) in a finite domain 

D and to the accuracy of a rigid shift without rotation Uci(X) = vci(x) = ci ~ (x e D) in the 

infinite domain D. The constants Cj(k~ = Cj ~ (j = 1-3, k = l-N) in (1.13) for each connected 

part of the reinforcement. The solution of the problems (r - u) and (r - T - u) is unique 
in both the finite and the infinite domain D. 

Let us note that sufficiency of the conditions (2~ (2.9), (2.10) hence follows 

for uniqueness of the determination of not only u i and v0i but also the constants ci(k) on 

all rods [Cj (k~ = Cj ~ to vci accuracy in the problems (r) and (r - T)]. 

Setting ui*(x) = vi* = C i + C3eijx j (xj e D) in (2.8) (C 3 = 0 for the infinite domain 

D)$ and taking account of (2.6), we have that it is necessary for the solution of the prob- 

lems (r) and (r - T) to exist in the class B(r) (D, L b U L w) that the principal vector, and 
for a finite domain the principal moment of the external forces applied to the reinforced 
body as well, be equal to zero. 

Up to now we spoke in this section about the problem of the plane state of stress for a 
plate reinforced by a rod (stringer). But it is easy to see that all the assertions obtained 
here are also carried over to the plane strain problem for a cylinder reinforced by a cylin- 
drical shell if A* is replaced by A in (i.I) and (2.7) and we set H0 = 1 in (2.8) and take 
account of the remark at the end of Sec. I. 

3. STRESS SINGULARITY AT ANGULAR POINTS AND ENDS OF STRINGERS 

We assume in analyzing the singularities that the stresses near the singular points in 
the plate satisfy the estimate oij(r) = O(r-7), 7 < i. Hence, taking account of (1.13), 

(1.14), and (2.3), there.results that if the stiffnesses G(s) and G1(s) at the point s.~ under 

investigation are not zero while the curvature X(S) is bounded, then Ivi(s,, p(P), m(P])l, 

[nivi(s,p(P), m(P))]' I < ~. Then components with these terms can be carried over into the 
right side of (2.2) and we arrive at the problems 

u~(s_) = v~(~, h_), ~ ~ Lb_ , u•177 = v~(T, hi),  s• ~ Lw• ( 3 . 1 )  

where the right sides vi(~, h• are conditionally continuous while their derivatives are 
bounded at s... and Holder-like in the left and right neighborhoods of s, if the functions 
X(~), ~(~, h~(~)), I/G(T), I/GI(T) possess this property. Furthermore, we denote the param- 
eters s• h• by s and h if s, e L• respectively, ~, = T(s,). But conditions (3.1) are the 
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boundary conditions of the first boundary value problem (according to Kupradze) and the 
stress singularity has been studied well in such problems (see [i0, ii] and their bibliog- 
raphy). Let m be an interior angle of the contour L b_ or Lw• at the point s,. If ~ < m < 
2v, then the displacements and stresses in a partial local coordinate system (r, 0) with 
origin at s, and angle 9 measured counterclockwise from the bisectrix of ~ have the form 

I I  2 
1 - -~2m 0 * ui (p ,O)=Ci+ ~ K~u~ ~)(O)p + u ~ ( 0 )  p + u i ( p ,  0), 

? r t ~ l  

I I  

~ (p, o) = E ~K~o~? ) (0) 0 -'~ + o?~ (o) + o*~ (p, o). 
m = l  

(3.2) 

Here the degrees of the stress singularities ~iII(~), u e (0, i) are roots of the 

equations &,(• m, ~ II) = 0 and &,(-x, ~, y II) = 0, respectively, where the function ~,(• 
m, ~): = • - l)m] + (u - l)sinm and the plane elasticity theory constant ~ = (A* + 
3~)/(A* + D) for the plane state of stress and • = (A + 3~)/(A + ~) for plane strain. The 
stress intensity factors K m depend on the geometry and given loads and should be determined 

from the solution of the problem as a whole. The eigenfunctions ui(m)(@) , Oij(m)(0) depend 

only on the aperture angle and are written down explicitly ui*(p, 0), uij*(p , @), oij*(p, 

@) § 0 as p + 0 while the functions ui~ oij~ bounded for ~ < ~ < 2v (as can be shown, 
say, by using methods of [12]) have the form 

o. - -  (Ba - -  B 4 ctg co) cos 20 (B~ ctg o) + B~) s in  20 - -  B~Isin co, U p  . ~ 

ug : = (B~ - -  B 4 ctg co) s i n  20 - -  (B 1 ctg o) + B3) s in  20 + By ' s in  o), 

o . - -  (B 2 Ba ctg o)) cos 20 - -  (B 1 ctg o) + Ba) s in  20 - -  2B4/[(• - -  t )  s in  co], 
( 7 p 0  �9 ~ - -  . . 

o~o : =  (B~ - -  B~ ctg o~) cos 20 + (Bx ctg to + B3) s in  20 - -  2 B J [ ( •  - -  t) s in  ~o], 

%o~ : = (B 2 - -  B~ ctg to) s in  20 - -  (B 1 c tg  ~o + B3) cos 20; 

B1 : =  u~,~ (s ,)  cos (o)/2) + u~s  (s,)  s in  (o)/2), 

- -  ' ~ sin (~o/2) B:  :---- u ~  (s,)  cos (~o~ 2) - -  u : , ,  (s ,)  

Ba := u[,s(s,)sin (o)/2) -- U~,sA (S,) COS (~0/2), 

s (~o/2), (s,) s~n (o~/2) + u~,~ ( , )  cos 8 4 : ~ - -  U l ~  s 

u~,~ (s,) = [~,~ (~ (s ,)) l  ~, u ~ ,  ( s , )  = [v~,~ (~ (s,))t  A. 

( 3 . 3 )  

(3.4) 

Here and henceforth, the notation is ~s(s,):=[9(s.+0)+9(s*--0)]/2, TX(s.):=[~(s, + 0)--9(~.-- 
0)]/2 for the function ~(s). Hence it is seen that in the first problem the coefficients 
are determined explicitly in terms of the tangential derivatives of the given boundary dis- 
placements around the angular point. Taking account of (1.5) we obtain [Ui,sni ]A =.-[h(l + 
xh)-lUi,ski ]A from the last condition (1.4) in the problem under consideration with given 
elastic reinforcements, i.e., 

B ~ s i n  o ) - - B ~ c o s  (o = [s -4- %h)]A (B 2 cos ( , ) - -  B i  s in o)) - -  

- -  [/~,"(i q- ~h)1~ (B~ cos ~o + B3 sin (o). 
(3.5) 

Therefore, B 2 can be expressed in terms of the remaining coefficients Bl, B~, B4, which, like 
Km, are not determined a priori. Let us note that if h(~...) = 0, in particular, if the rod 
has zero thickness, then because of (3.5) the first parentheses in each of the expressions 
(3.3) equal zero while if h = 0 and m = v/2, then the tangential stress is Osn = 0. 

In the case when m = ~, i.e., s, is a point of smoothness of the contour, the asymptotic 
(3.2) and (3.3) is replaced by the following 

u~ (p,0) = Cp (0) @ {[-- (• -t- t) (n• B~ (ln p - -  i) § Ko~ ] sin 20 -]- 

+ Ko.~ (cos 20 + 1) - -  B~ (~•  0 [(• + t) cos 20 - -  • + t1 + B~} p + u~ (p, 0), 

u o (p, 0) = Co (0) + {[-- (• @ t) (n• -1 B 1 (In p - -  t) -~- Kol ] (cos 20 - /  '1) - -  

- -  Ko2 sin 20 ~- B 1 (~• (• + 1) 0 sin 20 ~- B3} ,o + u o (p, 0), 
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(7pp = 29 {[ - -  (• ~ i) (~• 31 In p + Kol ] sin 20 -~ 

+ Ko2 [cos 20 + 2/(• - -  t)] + 0 (u• B~ [-- (• + i) cos 20 + 2] + 

-}-232/(x -- t)} + %~), 

%e = 2Ix {-- [--  (• - -  t) (~• B~ In p + Ko~ ] sin 20 + 

+ go2 l--  cos 20 + 2/(x - -  1)] -? O (~• B~ [(• + i) cos 20 + 2] + 
, $ 

-t- 232/(• - -  t)} 1- %e, 
%e = 2~t {[-- (• + i) (n• - I  31 In p + Kol ] cos 20 + Ko2 sin 20 --  

~- 0 (~• B~ (• + t) sin 20 -- (.~• B~} -6 %e, 

(3.6) 

Here and henceforth Cp(e), ce(8) is the constant shift C i in Cartesian coordinates expressed 
in polar coordinates, for simplicity it is assumed that ~(s,) = 0 for ~ = ~, then B 4 = 0 be- 
cause of (3.5). The remaining coefficients Bi, just as the factors K01 , K02 , are generally 
not determined a priori. However, if we use the notation Xh(T): = X(~) + G(T)h(~)/[GI(T)%(r 
h)], then for m = v we find Fiki~162 + Xh(T)MR = G(~)Ui,s(s)ki(s) from (1.5) and (1.6). Then 
taking account of (1.4) and (3.4) 

= ' sx,, ( ~ , ) n r  + 2 G ~ ( T , ) / ~ ] / [ 2 C ' ( ~ , ) ] ,  ( 3 . 7 )  

where FRi* and MR* are concentrated external forces and moments at the point ~,. It is 

hence seen that for ~(s,) = 0 the logarithmic terms in (3.6) can occur when there is a con- 
centrated longitudinal force or moment at the point of smoothness s, or a jump in the longi- 
tudinal stiffness G or in Xh. If the longitudinal stiffness and Xh are continuous, the coef- 
ficient BI of the logarithm is expressed explicitly in terms of the given concentrated force 
and moment and equal zero if they are missing at ~,. 

If the angle is 0 < ~ < ~ at the point s, then the asymptotics (3.2) and (3.3) hold with 
(3.5) taken into account but for K l = K 2 = 0 terms with these exponents can be combined with 

ui*, oij* since y II, y211 < 0. Therefore, the principle parts of the asymptotics are given 

by (3.3). 

BiIfcosG =~G l B3 = ~, thenm from (~5)placeand (1.6) it is easily~ v we seen that u i s =opp ~ opeThen B 20, = 
= + sin = 0 and " of (3.3) for r obtain Up s = = = B4 

u@ ~ = Bz/sinm. For w = v it is necessary to substitute relationships BI = B= = B~ = 0 in 
the asymptotic (3.6). 

The asymptotics (3.2), (3.3), (3.6) indeed refer to an analysis of the tip domains of 
internal stringers with nonzero thickness if it is assumed that the stringer model being used 
is applicable at these points also. Then ~ are the angles of the local geometry of the tip 
domains. If the internal stringer thickness in the tip domain equals zero then w = 2v, Yz = 
u = 1/2 in this domain. As before the asymptotics of the displacements and stresses have 
the form (3.2) for m = 2~ but the smallest terms ui ~ oij ~ will here differ from (3.3). If 

s, is the point where contact between the edge stringer and the plate terminates and, more- 
over, displacements are given on the boundary, then interchanges of the type of boundary con- 
ditions of the asymptotics (3.2)-(3.4), (3.6), (3.7) are conserved completely at this point. 

By analogy with the above, it is easy to see that at the point of interchange of the 
type of boundary conditions occurring at the end of the edge stringer when forces are later 
given on the boundary (conditions of the second problem), the asymptotic will be the same as 
in the neighborhood of the point of interchange of the type of boundary conditions of the 
first and second problems (see [i0, i!]) outside the dependence on the stiffness, thickness, 
and curvature of the stringer if the stiffnesses are G(s,), Gz(s,) # 0 while X(s,) ~ ~ at 
the points s, being investigated. 

Therefore, in problems with one-dimensional elastic reinforcements having nonzero longi- 
tudinal and bending stiffnesses and bounded curvature, the principal terms of the asymptotics, 
�9 and particularly, the degrees of the singularities will be the same as in the problem with 
given displacements. The influence of the stiffnesses and curvature affects only the values 
of the coefficients of this asymptotic. 

Let us note that the case when G(s), Gz(s) § 0, • + ~ as s § s* can be investigated 
by methods similar to those used in [13, 14]. 
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For rods (shells) of nonzero thickness in zones with large curvature, including in the 
neighborhood of angular point of the axis, there occurs an intersection of the normals to it 
in the bulk of the rod. For a correct formulation of the problem it is necessary to refine 
the theory of rods in such zones. In particular, these zones can be considered rigid inserts, 
i.e., G = G z = ~ can be set there. To remove given and contact forces distributed over the 
rigid zone on the axis, (1.8) and (2.3) can be replaced by any relationships yielding their 
principal vector and moment in this zone. Then the results obtained above are conserved even 
for such cases. 
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